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Approximate analysis is a major application of variational principles for heat Received 17 January 2017
conduction. Recently, O'Toole’s variational principle for Fourier's law has Accepted 14 April 2017
been extended to non-Fourier heat conduction models, which are applied to

approximate analyses based on the Rayleigh-Ritz method. Suitable trial

functions satisfying boundary conditions are sought, and then substituted

into the variational principles to obtain the undetermined coefficients. From

the inverse Laplace transforms, the approximate solutions are obtained.

Examples are provided for 1D problems for different heat conduction

models. The largest calculation errors are one or two orders of magnitude

smaller than the equilibrium temperature, which will tend to be zero.

1. Introduction

Great efforts have been made on approximate methods for heat conduction problems [1-4]. Although
the thermal balance method is one of the most typical and commonly used methods [5-8], variational
principles for heat conduction can also provide approximate analytical methods, which may help
develop numerical methods and discuss the characteristics of solutions [9,10]. There are several var-
iational principles for dissipative processes including heat conduction, which have been pioneered by
Onsager et al. [11-13], Prigogine et al. [14], Biot [15,16], Gyarmati et al. [17,18], and others [19-23].
Biot’s variational principle is one of the most frequently used methods for approximate analyses
[24-27]. Gyarmati’s variational principle of dissipative processes, which is usually called the
Governing Principle of Dissipative Processes (GPDP), is also often applied to approximate analyses
[28-31]. Both Biot’s method and GPDP are mainly used for approximate analyses in Fourier heat
conduction, whose results have been enriched for different problems. However, for non-Fourier heat
conduction, which must be considered at low temperature, high heat flux, and supertransient and
small-scale processes [32-37], the variational analytical method is rarely studied.

O’Toole [38] first used Laplace transforms to provide variational principles for time-dependent
transport processes with the Laplace transform [39] U(x, y, z, p) of a function u(x, y, z, t) expressed
as U(x,y,z,p) = fo u(x,y,z,t)e P'dt. O’Toole’s variational principle is only for Fourier’s law with
the first type of boundary condition, which specifies the boundary temperature. Recently, O'Toole’s
method has been generalized to other cases, including non-Fourier heat conduction and all three
types of boundary conditions [40]. Variational principles based on Laplace transforms are proposed
for several non-Fourier heat conduction models, including the Cattaneo-Vernotte (CV) model
[40,41], the Jeffrey model [42], the two-temperature (TT) model [43], and the Guyer-Krumhansl
(GK) model [44].
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Nomenclature

a thermal diffusivity in Fourier’s law, m?/s T temperature, K
c isothermal first-sound velocity in the GK model, T, electron temperature in the TT model, K

m/s x space coordinate, m
Cg heat wave velocity, m/s a, thermal diffusivity of the electrons in the TT
cy specific heat, J/K - kg model, m?/s
D spatial domain oo agp equivalent thermal diffusivity in the TT model,
F Laplace transform of temperature, F = [ Te P'dt m?/s
Fo Fourier number 0 A thermal conductivity in Fourier’s law, W/K - m
k total thermal conductivity in the Jeffrey model, p mass density, kg/m’

WIK-m T thermal relaxation time in the CV and Jeffrey
kg thermal conductivity for Fourier heat conduction models, s

in the Jeffrey model, W/K - m ™™ single-phonon relaxation time for normal
) boundary coordinate, m processes in the GK model, s
q heat flux, W/m? TR momentum loss relaxation time in the GK model, s
t time coordinate, s

This paper applies the variational principles based on Laplace transforms to approximate the
method for Fourier and non-Fourier heat conductions. The approximate analyses can be considered
as an extension of the Rayleigh—-Ritz variation method. First, in the Laplace transform space, suitable
expressions of the trial functions satisfying all boundary conditions are sought, which have
undetermined coefficients. Then, these trial functions are substituted into the variational principles
based on Laplace transforms to obtain the undetermined coefficients. After determining the coeffi-
cients and trial functions, approximate solutions can be derived from the inverse Laplace transforms
of the trial functions. Approximate analytical examples are provided and discussed for one-
dimensional problems with the first type of boundary condition, and different heat conduction
models, including Fourier’s law, the CV model, the Jeffrey model, the TT model, and the GK model.

2. Approximate method and examples
2.1. Fourier's law

Fourier’s law and the energy conservation equation are expressed as

q+A\VT =0, (1)
oT

g = — . 2

V-q pev 5, (2)

The thermal conductivity A, the specific heat ¢y, and particularly the mass density p are positive and

constant in time and space. Eqs (1) and (2) can be combined to give the heat conduction equation:
oT A
—=—VT. 3
ot pey 3)

For the first type of boundary condition, the variational principle based on Laplace transforms [40] is

8 ///{pTxV|VF|2+p|F2—2F(T|t_0)}dv =0, (4)

Consider a one-dimensional problem in 0 <x <[, where the initial condition is taken as
T|,_y = To(1 + sin™) and the boundary conditions are taken as T|, _ o, ;= To. The classical solution
of this problem is

__Am“t

T(x,t) = T0(1 te e sm$>. (5)
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The approximate solution of this problem is written as T} (x,t). F; is the Laplace transform of
T; (x,t), which should satisfy Eq. (4) and the boundary conditions. Because there are two boundary
conditions and one variational equation, F; can be expressed as a second-order polynomial

approximation:
Fik = k1x2 + b1x+ Cy.

The Laplace transforms of the boundary conditions are

. To
Fl |x:0ﬁl = ;
From Egs. (6) and (7), we can obtain
To
G =—,
p
kil+ b, =0.

Then, we have a second-order polynomial approximation expressed by k;:
T
Ff = kix* — kllx+?0.

Substituting Eq. (9) into Eq. (4) leads to

1
2
5 / [7‘ (2kix — k)’ +p<k1x2 b+ 7;’)

pcy

T
-2 <k1x2 — kylx + f) To (1 + sinn—lx)] dx} =0.

Equation (10) could be simplified to

M ph 8ToPk, M pP 8T,
Sl —— +2 )& = o[+ )k 8(ky) = 0.
[(3PCV+30) DA } { (3PCV+3O> B ] ()

From Eq. (11),

_4T,P
3
k=—"7T"—.
B erj
3pcy ' 30

Substituting Eq. (12) into Eq. (9), we get

_4AT,P T,
FT :ﬁ(xz —lx) +_0
(35 +%) P

From the inverse Laplace transform of Eq. (13), the approximate solution is obtained:

120 . 102t (x> x
Ty (x,t) = — ey Toe v (1_2 - 7) + To.

The calculation error is

120 IRT Y 2 _ e T
ATy (x,8) = T (1) — Ty(x, ) = — 2 Tye 57 <’“ _ ") 1o i
T

2o

(6)

(10)

(15)
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From the differentiations of Eq. (15), we have <AT1 (x 1) <0, (Ag‘éx’t)) , =0, MTé—f"’t)) , =0
O<x< xX=5
and W o < 0. Therefore, the calculation error reaches a maximum atx =1 and t=0
2§x<
)
max[AT (x,t)] = AT, (2,0> = 0.03245T),, (16)

which is two orders of magnitude smaller than the equilibrium temperature T. For a fixed time #,,
ATl( to) is the largest calculation error in the whole temperature field. Therefore, the calculation
error at x = 5 could show the degree of approximation in this problem, which is shown by
Figure 1. It is found that AT; (4, t) decays with time. The largest calculation error in the whole field
will be smaller than 0.01T, when Fo = 0.2, and almost zero when Fo = 0.8. Notice that the whole
temperature field T(x, t) = Ty, and therefore the relative error will be smaller than the numerical value
in Figure 1. In engineering, when Fo > 0.2, the one-term approximate solutions or the transient tem-
perature charts will be applicable because their relative errors are smaller than 1%. It means that for
this example, this approximate method can provide sufficient accuracy in engineering.

2.2. CV model
The heat conduction equation of the CV model is

oT T » _,
— = — T. 17
ot T ey Y (17)

The variational principle for the first type of boundary condition [43] is

A oT
[ [ {a 19+ 4 ) 2| ap+ 0T g
b pcv 0 t=l

Consider a one-dimensional problem in 0 <x <[, where the initial conditions are taken as

JF}dV =0. (18)

T),_o = To( + sin ) aa{ = —%sm % the boundary conditions are taken as T|,_ o, ;= To; and
the physical propert1es satlsfy ‘;C”;z = 1. The classical solution of this problem is
X
Tev(x,t) = To (1 + e sin T) (19)
0.04
§ 0.03
3
b=
—
S
£ 0021
i3
g
= 001}
5
=
@
0.0 0.2 04 0.6 0.8 1.0
Time (ar/1')

Figure 1. The calculation error of Fourier's law.
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The approximate solution of this problem is T¢ (x, t), whose Laplace transform is F.,,. Similar to
Fourier’s law, Ff,, is still written as a second-order polynomial approximation:

Fiy = kevx® + bevx + cey. (20)

The Laplace transforms of the boundary conditions are

Ty

FéV|x:0,l = ? : (21)
From Egs. (20) and (21), we can obtain
Ty
ccy = —, (22—&)
p
kcvl + bCV =0. (22—b)
Then, F{,, can be expressed by kcy
* 2 To
FCV = kcyx” — keylx +—. (23)
Substituting Eq. (23) into Eq. (18) leads to
T I
) / |:p7 (2kcvx — kcvl)z + (p + sz) (kc\/X2 — kcle + ?0> -
v
(24)
2 Ty Cnx 1 mx
2Ty | kcyx® — kcle+; 1+1tmp+ tpsmT + EsmT dx p = 0.
Equation (24) can be simplified to
AP (p + sz)ls 4Tolskcv
8 kiy +———(1+21p)| =0 25—
(oo + 5 )i+ 2 (14 2p)| = (25-3
M (p+Tp?)P 4T, P
2 1+2 =0. 25—
{ (3pCV + 30 >kcv + o (14 Tp)] d(kcy) =0 (25—b)
From Eq. (25-b),
_ ZTgP (1 + 2Tp)
kev = W~ (26)
3pcy 30
Substituting Eq. (26) into Eq. (23), we get
— 24P (1 4 21p) T,
ok 3 2 0
FCV —M?—(sz)ls(x —lx) “r? (27)
3pcy 30
From ‘&:Tl‘; = 1 and the inverse Laplace transform of Eq. (27), the approximate solution is obtained

. 120, . t [5 1\[/x* «x
TCV('x7 l’) = —?Toe 2t COS (; ﬁ —Z> (l_2 - 7) + T(). (28)
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The calculation error is

ATC\/(X, t) = Tév(x, t) — ch(x, t)

=— 120 Toe % cos (E > l) (x_2 — f) — Toe = SinE' (29)
U tVanr 4\ I I
From the differentiations of Eq. (29), we have (ATMX ) < o, (AT%ZC(x ) - >0, G(AT%\;(x ") - 0
and W I < 0. Therefore, the calculation error reaches a maximum at x = % and t=0
max[ATcy (x,t)] = ATcy (é , 0) = 0.03245T,. (30)

which is also two orders of magnitude smaller than the equilibrium temperature T). For a fixed time
to» ATCV( to) is still the largest calculation error in the whole field. Figure 2 shows the calculation
error at x = £, which reflects the degree of approximation in this problem. It is found that AT¢y (£, t)
decays with time, which will be smaller than 0.01T, when t = 2.57, and almost zero when t = 10t. In
general, the relaxation time of matters is very small in physics, which is in the order of ps~fs, showing
that the calculation error will tend to zero very quickly.

2.3. Jeffrey model
The heat conduction equation of the Jeffrey model is

10T T _ k 2T+kF6
Tot o pcyT pcy Ot

(V°T). (31)

The variational principle for the first type of boundary condition [40] is

_k PkF F
/// I e V1 G )

P+ T| at =0 pcvv2T|t 0}

Consider a one-dimensional problem in 0 <x </, where the initial conditions are taken as

. 2 . ..
T),_o = To(l + sin "—l"), %—f — = T" Usin T, VZT|t:0 = — 5 Tosin™% the boundary conditions are

0.04

0.03

0.02 |

0.01 |

Calculation Error (ATcy/Ty)

0.00 |-

0 1 2 3 4 5 6 7 8 9 10 11 12
Time (r/’r)

Figure 2. The calculation error of the CV model.
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2
taken as T, — o, ; = To; and the physical properties satisfy ‘gg/’; = (1 + ’;)FCTVTEZZ ) . The classical solution of
this problem is

ot kynzt
T(x,t) = Ty <1 +e T war sinn—lx>. (33)

Similar to the above-mentioned cases, F;, which is the Laplace transform of the approximate solution
T} (x,t), is still expressed as a second-order polynomial approximation:

T
Fj = kyx* — kylx + ?0. (34)

Substituting Eq. (34) into Eq. (32) leads to

1
2
’ /Kk+rpkp>(2k’x_kf) (P+TP)<ka2—kflx+£0) —2Ty
0

pcy  pcv

(35)
Ty Cnx 1 mx thpm? | mx
kix® — kjlx +— ) ( 1 — + —sin— — ) |dxy =
(,x ]x+p>( +rp+rpsml +231nl+pcvlzsml X
Equation (35) could be simplified to
5 (k + ‘Cpkp)l3 I (p + sz)ls kz I 4Tol3k] 142w+ 2‘EkaC2 —0 (36 a)
3pcy 30 7 3 P pey 2 o
(k + tpkg)P? (p +1p?)P 4T, P 2tkpm? B
{2[ 3pcy 30 ky + e 1+2tp+ e d(ky) = 0. (36—D)
From Eq. (36-b),
~2F (14 2np 4 )
k] 3 2\[5 (37)
(k+Tka)l + (p+p?)l
3pcy 30
Then, we can obtain F}
2T(, (1+2,Cp+2'fkpﬂ2)
. pcy 2 ' E
= (k?fc]:; L (p+rp )5 (x lx) + 'R (38)

There are three cases for the inverse Laplace transform of Eq. (38). When T%(%—iﬂ—
5 (— - 25) > 0 (called Jeffrey-1), the approximate solution is

pZCZZA
. 120T, (x> x\ —L-et t |5 1 kit® (572
Tz(x’t)—TO_T(Z_Z‘T)eZ {l w i panla P
(39)
kpt(m? —5) |t /5 1 Kk (512
+ sin| (35— 3t oag |y~ 2
) . @ (s T\ 2n2 4 picyl
pevPyfsm =i+ 252z4(7—25)
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The calculation error is

120Ty /x> x\ —r_ ket t /5 1 kit (5m2
AT]](X, l’) = —— <———>e x ﬂfvlz{ Ccos _|_F— - _ 75
w \P I 2w 4 2Rl 2

_ 22 2
krt(n — 5) sin| L[> L kT Sifzs (40)
B o t\l2n? 4 PPl
pcvl2 2 -1y (& — 25)

p2214 5

* kl.nt

— Toe * w? smT

In this case, the calculation error will still reach a maximum at x:% and t=0,

max[ATy(x,1)] = ATy (£,0) = 0.03245T,, which is still two orders of magnitude smaller than the
equilibrium temperature T,. AT (4, ) is shown in Figure 3 (Jeffrey-1, p’Z”lz =55). In this case, the
largest calculation error in the whole temperature field still decays with time, which will be smaller
than 0.01T, when =27, and almost zero when f=9t. When % (3% —1) + Kk (Si —25)=0

2 \2n2 P
(called Jeffrey-2), the approximate solution is

120T0 x2 X\ —Lt_ ket kF(TCZ—S)
Ti(x,t) = To— —2 (=2 ) e ¥ e |1 4 20— 2y 41
ot = = (= 3)e 1 B &

The calculation error is

1207, (x X%\ et ke(n? —5) Lk oqx
Ale(x, t) = puc (7 — l_2> e pey 2 [1 =+ 7[)6\/[2 t| — T()e pey 2 smT . (42)

In this case, ATj, (4, t), shown in Figure 3 (Jeffrey-2), is still the largest calculation error in the whole
temperature field, but AT}, (%, 0) is not the maximum error. The largest calculation error in the whole
field reaches its maximum at ¢ =, and this maximum error is only one order of magnitude smaller
than the equilibrium temperature T,. When % (i — %) + pzﬁgv i (57”2 — 25) < 0 (called Jeffrey-3), the

2m?

0.05
- Jeffrey-1
ot 73 = = = Jeffrey-2
Rz ==== Jeffrey-3
; 0.00 f oo p oIRRE ...-...--.-..-.-_-:-__._-_--,-..---.--—--—-———
= -
g .
5 e
= Sae -
= n:?.": T e
8 B kel
= :II-—,l g
3 R T
S [\
\-) am .
1
a0zt .'I . .
aca 028 050 078 00 128 180
1 1 L 1 1 1 | I—— L 1 1
01 2 3 4 5 6 7 8 9 10 11 12

Time (1/7)

Figure 3. The calculation error of the Jeffrey model.
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approximate solution is

t Skpt ¢ 15 ke (25512 x i g7 95_5n2
y 60T, X % ooy T[T 22 A *T) T 37W+92c@1‘1( *T)
Ty (x,t) = — lz__ e e +1

o l
(43)
2T
k(n? — 5 4y [sirden(2-4)
+ e v —1 —+ To.
2
2peyl? \/i - nz + pzc2 [ (25 - SL)
The calculation error is
¢ Skpt ¢ , kszz/ 2
ATy = — 80T0 (2 ) Ty w5
S © \E 1
u 1 2 (25-52)
/Tt Raal BT kpt(n? — 5)
e v +1+ d
(44)

ZpCVlz\/i o 21:2 + p c2 I ( - STRZ)

i K212 2

2 1 5 E 5

RIEEars 7(25-%) okt oy
e v -1 — Toe * eyt sin—-.

In this case, the «calculation error will still reach the maximum at xzé and =0,

max[AT3(x, t)] = ATy (4, 0) = 0.03245T,, which is still two orders of magnitude smaller than the

plelez = nz) shows the largest calculation error in

the whole field. ATj;(L,¢), which decays with time, will be smaller than 0.01T, when ¢ = 1.57, and
almost zero when t = 5.57.

equilibrium temperature T,. Figure 3 (]effrey -3

2.4. TT model
Anisinov et al. proposed the TT model for metals with the heat conduction equation expressed as

0 19T, | 1 0T,

2 G O ooy L
VT+C26t(VT> o at‘ch oz’ (45)
For the first type of boundary condition, the variational principle [40] is
A G (G g)e
’ (46)

1 oT, 1 o
[4 - Te -0 —e zTe Fe =
om0 ) e o Juo)

Consider a one-dimensional problem in 0 < x < I, where the initial conditions are taken as T|,_, =T

iamx) OT — TOE
(H‘sm z)’ otlt=0 = ~ 20

sin ¥ VZT\t == “ T, sin™; the boundary conditions are taken as T}, — o, ; =

Ol OLETT
>3]
Ci

Ty; and the physical properties satisfy z c2 = (1 + ) . The classical solution of this problem is

2 2
__E_ Jem“t TT.
T(x,t) = To(l T sinTx>. (47)
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F}, which is the Laplace transform of the approximate solution T (x, t), can be written as
T
F' = kox® — klx + ;" (48)

Substituting Eq. (48) into Eq. (46) leads to

1
5 / (ozE—i—paCeaE)(Zkex kl)2+(
0

p*o T\’
- o ) (kexz — kebx + ?) 2T,

T o T 1. =« OO
2 fo poE in ™ L e Qe
(kex kelx+p)[<l+ C%)(1+sm l) 2sm ] +— c 12 l]dx}

Equation (49) could be simplified to

(49)

Pote P
, (uE +ac—§f) P . (P + C%E) r . 4T, PP | 2po  2mlo0p
3 30 ¢ [ 2C2

)5(1@:0. (50)

From Eq. (50),

2 2
2T<, (1+ PO(E+27IZZOCLFZQE>
E

(aEer “C‘Z“E) B (p#i#) s
‘E + ‘E

3 30

ke = (51)

Then, we can obtain the Laplace transform of the approximate solution
2 ]
2Tg (l + 2p<>t£ + 27rlzogzab>
F* _ E (

e
(u+PC—E) p (er"%) .
‘E _|_ ‘E

3 30

xz—lx) +E

There are also three cases for the inverse Laplace transform of Eq. (52). When gf(#fi)Jr
= (— — 25) > 0 (called TT-1), the approximate solution is "

1207, x\ G s
T:(XJ)_ 3 0(l—2—1>€ 2‘55 2

tCy 1+0L20LE 52 s
cos -
2n2 4 cr\ 2

ochce(nz —5)

5 53
ZZCZ i _ 1 + (Sn _ 25) ( )
tCy 1 L oo 57:2 55 LT
sin —_— = —— .
21t2 Cil 0
The calculation error is
120T) (x %7\ G s
ATel (x, t) = T (7 — l_z) e g |
tC2 1 o2ol (5n2 ) ozEae(nz —5)
cos [ —— = + — =25 +
2n2 Cil4 s (54)
{ PCL\/55 — L+ 52 (52 — 25)

tCy 1 N oo (5m2 55 . 75_%7137221 . Tx
sin — — —_— — — e “"E 28 sIn—.
2n2 4 CiE\ 2 0 I
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In this case, the calculation error will still reach the maximum at x:% and t=0,

max[AT, (x,t)] = ATe (4,0) = 0.03245T,, which is still two orders of magnitude smaller than the
equilibrium temperature T,. Figure 4 (TT-1, ‘;‘;gf = an, T = CZ) shows ATel ( ), Whizch will be smal-
ler than 0.01T, when t = 2tz and almost zero when f= 915 When —£ G (% -N+% ( —25)=0
(called TT-2), the approximate solution is

120T, (x? _Gso (=5
T;(x,t)To—3°(x—f)e ET {IJFML‘} (55)
TT

The calculation error is

120T 2 _2 Soet . 2 _5
AT (x,t) = ——3-° (’_l“’l“_z)e e [Hmt]
TT

2

, (56)
_Cp_oen? X
— Toe 2= 2# sinT.

AT, (% , t), shown in Figure 4 (TT-2), is still the largest calculation error in the whole temperature
field. The largest calculation error in the whole field reaches its maximum at f=1g which is
only one order of magnitude smaller than the equilibrium temperature T,. When

% -bH+% ( — 25) < 0 (called TT-3), the approximate solution is

c2t 5 12 5 a2a? 2 2tC2 uf 2
60T, (2 x\ s [ s [ 5 e o)
T (x,t) = — 30 = —e g e ¢ +1
i I I
ZtCé 1_.5 “ﬁ 5n2 (57)
ogo(m? — 5) T\ e (5 %)
+ e —1 =+ T().
202, |1 _ _5m?
21 CE\/4 e c414 (25 )
0.05
- TT-1
I —-=TT-2
TR === TT-3
(000 fasscafe SERAR IR s mn e e ettt
5 e
~ A -~
g l g
e 1 (] Tl
=) | N~
£ -0.05 | i ThEa
- ! o B
= .l | . ey
g B oo -" Teeaa
= |
3 010 |-+ s b ||' ..................
= \
U am .
|
-0.15 i .
0.00 028 050 078 1,00 128
1 L | 1 1 L L 1 1 L 1

0o 1 2 3 4 5 6 7 8 9 10 11 12
Time ( r/'r.r.)

Figure 4. The calculation error of the TT model.
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The calculation error is

c2t 5 c2 2 2 2uC2 5 mg o2 2
60T, [(x X2 255 7261 a;f i 215[2 I (,4,14E<25757) =S %7F+c4_145(25757)
ATy(x,t) =—~ (57— |e ¢ e ¢ +1
T I 1
2 2G s % E(25—522) 2
OO (T* — 5) w \[ 1 2 s P G e .ix
+ e -1 — Toe 2= 22 smT.
2 15 %0 5m2
ZZZCE\/Z — ot (25-)
(58)
In this case, the calculation error will still reach the maximum at x =4 and t=0,

2
max[ATes(x, t)] = ATes(4,0) = 0.03245T), which is still two orders of magnitude smaller than the

equilibrium temperature Ty. Figure 4 (TT-3, ?‘;gf = nz) shows AT,; (%, t), which will be smaller than

0.01T, when t = 1.57;, and almost zero when ¢ = 5.51.

2.5. GK model

The GK model is a classical model for phonon heat conduction whose heat conduction equation is

9ty D 2 0T 30T
ZT N 2 - _— 59
ViT+— 5 ot (V°T) = Tre2 Ot 2 o2’ (59)
For the first type of boundary condition, the variational principle [40] is
1+9w )|VE,? +(”2+ )Fz
/// 39T Iy 72 dv.o =0. (60)
1: c2 + )T’t:O +c_2§ =0 TV T|t=0}F

Consider a one-dimensional problem in 0 <x <[, where the initial conditions are taken as

. 2 . cps
T|,_o = To(1 + sin%), %—fr 0 = 3TT° sin%, V2T|,_, = —% Tysin% the boundary conditions are

2
taken as T|,—o, ;= T and the physical properties satisfy TRC L. (1 —i—%’;—;) . The classical

solution of this problem is
T(x,t) =Ty (1 fe o oo smn—lx) (61)

As the Laplace transform of the approximate solution Tg (x, t), F& is still written as

T
FEK = kGKx2 — kGle + ?0 . (62)

Substituting Eq. (62) into Eq. (60) leads to

!
TRE>  IPTNTRC 2 3tpp’
8/ |:<T + T) (ZkGKx - kGKl) + (p +T
0

T 2
(kGKx2 — koxlx + f) 2T, (kGKx2 kexlx + )

3 1 9 2
[( +T—Rp> (1+sinE) f—sinEJr INTRC T sin—} =0.

(63)

2 l 2 l 10 P l
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Equation (63) could be simplified to
(3 4+ 2fpr) N (p+2)r

GK
3 30 (64)
4T, P 9N TREE T2
+ 3 (1 + 3trp + 5 1—2 S(kGK) =0
From Eq. (64),
L (14 3tpp + 208
kGK - e | 9yTRE 3t (65)
(’%w%) E ()
3 30
Then, the Laplace transform of the approximate solution is obtained as
2T0 ( 431 p_|_9‘cN1:Rc n)
2 T
Fiy = (- Ix) + 2. (66)

("%ﬂf:”%) kL (P+3;ZZP )E

There are also three cases for the inverse Laplace transform of Eq. (66). When F(%_i)"‘

ot (— —25) > 0 (called GK-1), the approximate solution is

2514 2
1207, x\ o wd 2t [ 5 1 8ltdtict (512
Tep(x,t ——T)e ™ 2 {cos|— | — -+ —DN R (T 25
ox(%:t) = == (12 l) R [m \/an 47 1008\ 2
N 9N Tre (M2 — 5) sin [ﬁ \/i 1 N 8113 15ct (5_71',2 B 25) LT,
2 4 :
1012 _1+81;§,Otl§c (5nz 25) 3tr \/ 27 4 100! 2
(67)

The calculation error is

120T, /x  x*\ __o 3wé 2t 5 1 8ltdtict (512
AT, t) = T )ewm e L2 2 SINTRE (2T 50
GK1(x, 1) e <l 2 > e 7K { cos |;’TR \/an 4 + 10014 P

9tNTrcA (M2 — 5 2t /5 1 8ltt 572
+ NRC( ) sin |—=—— _2__+N712(__25)
1012 8113 tact (5ﬂ2 25) 31 |/ 21 4 1001/ 2

—1
2n2 1+ ~Toor

t 3'TN': 2t ™

—Toe @ 102 sinT.

(68)

In this case, the calculation error will still reach the maximum at x:% and t=0,

max[ATcki (x,t)] = ATgki (§,0) = 0.03245T,, which is still two orders of magnitude smaller than

the equilibrium temperature T,. Figure 5 (GK-1, 9ngl‘z’c = #) shows ATgx; (%, t), which will be smal-

2 4
ler than 0.01T, when t = 31y, and almost zero when t = 1215. When (2—1512 — ﬁ) + 921§,l§ (Sziz - 25) =0

(called GK-2), the approximate solution is

x? _o e 3tnc?(n? -5
X>e 3 {I_Mt. (69)

. 120 .
TGK(X’ t) = T() - ? T() (l_Z — 7 3R [ 5[2
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Figure 5. The calculation error of the GK model.

The calculation error is

120T, 2\ o s 3tyc?(n? — 5)t L e T
ATgra(x,t) = 0 <x_x>e ETa" [1 _3wel(w = 9)) Toe 107 sinTx. (70)

mw \l P 512

ATgra (é , t), shown in Figure 5 (GK-2), is still the largest calculation error in the whole temperature
field. The largest calculation error in the whole field reaches its maximum at t = 1.51, which is only

one order of magnitude smaller than the equilibrium temperature T,. When %(ﬁ—i)—i—

9;;";4 (% —25) < 0 (called GK-3), the approximate solution is

¢ 3ty 5 1 81‘N‘RC (5m2_ I S e TR sn2_
TEK()C7 t) = 60’? (1_2_)_;>e 3 2 3R\ o2 1004 \'2 25) e“" AT 00 ( 25) +1
T
To.
9TNTrCE (T2 —5) N R ) +o
NR s S (525) _ 1
7 __l 81‘EN‘ERC 512
T
(71)
The calculation error is
2 L 5 S“NTRC (5n2 4t 5 1 8o et sn2_
ATGK3(x7 t) = 60?0 (3_;_);_2)@ S 2 R\ a2 1004 \2 25) &R Y T o0 (T 25) +1
TT
9tnTRCA (M — 5 At iflﬁ“vik‘ w2 o5
%tR 22 10014 1 72
[ T —
2. /5 1 811:N1:R 5m2
o 2
L e

In this case, the calculation error will still reach a maximum at x = { and t = 0, max[ATgk3(x, )] =
ATgks (l 0) = 0.03245T,, which is still two orders of magnitude smaller than the equilibrium

temperature Ty. Figure 5 (GK-3, 9%}}’5 = #) shows ATgks3 (% , 0), which will be smaller than 0.01T,
when t = 21y, and almost zero when t = 8tp.
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3. Conclusions

This paper applies the variational principles based on the Laplace transforms to the approximate
method for both Fourier and non-Fourier heat conduction problems. The approximate analyses
can be considered as an extension of the Rayleigh-Ritz variation method. First, in the Laplace trans-
form space, suitable expressions of the trial functions satisfying all boundary conditions are sought.
Then, these trial functions are substituted into the variational principles based on Laplace transforms
to obtain the undetermined coefficients. After determining the coefficients and trial functions,
approximate solutions can be derived from the inverse Laplace transforms of the trial functions.
Approximate analytical examples are provided and discussed for one-dimensional problems with
the first type of boundary condition and different heat conduction models.

For Fourier’s law, the largest calculation error in the whole field decays with time, whose
maximum is two orders of magnitude smaller than the equilibrium temperature. The largest calcu-
lation error will smaller than 0.01T, when Fo = 0.2, which is in the same order of the one-term
approximate solutions or the transient temperature charts. This shows that the approximate method
based on the variational principles in Ref [40] can provide sufficient accuracy in engineering.

For the CV model, the largest calculation error in the whole field still decays with time, and its
maximum is also two orders of magnitude smaller than the equilibrium temperature. The largest cal-
culation error will be ignorable when # = 101. In general, the relaxation time of matters is very small in
physics, which is in the order of ps~fs, showing that the calculation error will tend to zero very quickly.

For other non-Fourier heat conduction models, including the Jeffrey model, the TT model, and the
GK model, there are special relations for physical properties. When the special relations are not
satisfied, the largest calculation errors in the whole field still decay with time and reach maximums
at t =0, and the maximums are two orders of magnitude smaller than the equilibrium temperature.
When the special relations are satisfied, the largest calculation errors in the whole field would not
reach maximums at t =0, and the maximums are only one order of magnitude smaller than the
equilibrium temperature. Whether or not the special relations are satisfied, the calculation error will
be much smaller than Ty in a short time if the thermal relaxation time is small enough, which is ten-
able for general non-Fourier heat conduction.
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